Spark Release 3.3.1

Spark 3.3.1 is a maintenance release containing stability fixes. This release is based on the branch-3.3 maintenance branch of Spark. We strongly recommend all 3.3 users to upgrade to this stable release.

Notable changes

  • [SPARK-35542]: Fix: Bucketizer created for multiple columns with parameters splitsArray, inputCols and outputCols can not be loaded after saving it
  • [SPARK-36057]: SPIP: Support Customized Kubernetes Schedulers
  • [SPARK-38034]: Optimize TransposeWindow rule
  • [SPARK-38404]: Improve CTE resolution when a nested CTE references an outer CTE
  • [SPARK-38614]: Don’t push down limit through window that’s using percent_rank
  • [SPARK-38717]: Handle Hive’s bucket spec case preserving behaviour
  • [SPARK-38796]: Update to_number and try_to_number functions to allow PR with positive numbers
  • [SPARK-39184]: Handle undersized result array in date and timestamp sequences
  • [SPARK-39200]: Make Fallback Storage readFully on content
  • [SPARK-39340]: DS v2 agg pushdown should allow dots in the name of top-level columns
  • [SPARK-39355]: Single column uses quoted to construct UnresolvedAttribute
  • [SPARK-39419]: Fix ArraySort to throw an exception when the comparator returns null
  • [SPARK-39447]: Avoid AssertionError in AdaptiveSparkPlanExec.doExecuteBroadcast
  • [SPARK-39476]: Disable Unwrap cast optimize when casting from Long to Float/ Double or from Integer to Float
  • [SPARK-39548]: CreateView Command with a window clause query hit a wrong window definition not found issue
  • [SPARK-39570]: Inline table should allow expressions with alias
  • [SPARK-39614]: K8s pod name follows DNS Subdomain Names rule
  • [SPARK-39633]: Support timestamp in seconds for TimeTravel using Dataframe options
  • [SPARK-39647]: Register the executor with ESS before registering the BlockManager
  • [SPARK-39650]: Fix incorrect value schema in streaming deduplication with backward compatibility
  • [SPARK-39656]: Fix wrong namespace in DescribeNamespaceExec
  • [SPARK-39657]: YARN AM client should call the non-static setTokensConf method
  • [SPARK-39672]: Fix removing project before filter with correlated subquery
  • [SPARK-39758]: Fix NPE from the regexp functions on invalid patterns
  • [SPARK-39775]: Disable validate default values when parsing Avro schemas
  • [SPARK-39806]: Accessing _metadata on partitioned table can crash a query
  • [SPARK-39833]: Disable Parquet column index in DSv1 to fix a correctness issue in the case of overlapping partition and data columns
  • [SPARK-39835]: Fix EliminateSorts remove global sort below the local sort
  • [SPARK-39839]: Handle special case of null variable-length Decimal with non-zero offsetAndSize in UnsafeRow structural integrity check
  • [SPARK-39847]: Fix race condition in RocksDBLoader.loadLibrary() if caller thread is interrupted
  • [SPARK-39857]: V2ExpressionBuilder uses the wrong LiteralValue data type for In predicate
  • [SPARK-39867]: Global limit should not inherit OrderPreservingUnaryNode
  • [SPARK-39887]: RemoveRedundantAliases should keep aliases that make the output of projection nodes unique
  • [SPARK-39896]: UnwrapCastInBinaryComparison should work when the literal of In/InSet downcast failed
  • [SPARK-39900]: Address partial or negated condition in binary format’s predicate pushdown
  • [SPARK-39911]: Optimize global Sort to RepartitionByExpression
  • [SPARK-39915]: Dataset.repartition(N) may not create N partitions Non-AQE part
  • [SPARK-39915]: Ensure the output partitioning is user-specified in AQE
  • [SPARK-39932]: WindowExec should clear the final partition buffer
  • [SPARK-39951]: Update Parquet V2 columnar check for nested fields
  • [SPARK-39952]: SaveIntoDataSourceCommand should recache result relation
  • [SPARK-39962]: Apply projection when group attributes are empty
  • [SPARK-39976]: ArrayIntersect should handle null in left expression correctly
  • [SPARK-40002]: Don’t push down limit through window using ntile
  • [SPARK-40065]: Mount ConfigMap on executors with non-default profile as well
  • [SPARK-40079]: Add Imputer inputCols validation for empty input case
  • [SPARK-40089]: Fix sorting for some Decimal types
  • [SPARK-40117]: Convert condition to java in DataFrameWriterV2.overwrite
  • [SPARK-40121]: Initialize projection used for Python UDF
  • [SPARK-40132]: Restore rawPredictionCol to MultilayerPerceptronClassifier.setParams
  • [SPARK-40149]: Propagate metadata columns through Project
  • [SPARK-40152]: Fix split_part codegen compilation issue
  • [SPARK-40169]: Don’t pushdown Parquet filters with no reference to data schema
  • [SPARK-40212]: SparkSQL castPartValue does not properly handle byte, short, or float
  • [SPARK-40213]: Support ASCII value conversion for Latin-1 characters
  • [SPARK-40218]: GROUPING SETS should preserve the grouping columns
  • [SPARK-40228]: Do not simplify multiLike if child is not a cheap expression
  • [SPARK-40247]: Fix BitSet equality check
  • [SPARK-40280]: Add support for parquet push down for annotated int and long
  • [SPARK-40297]: CTE outer reference nested in CTE main body cannot be resolved
  • [SPARK-40362]: Fix BinaryComparison canonicalization
  • [SPARK-40380]: Fix constant-folding of InvokeLike to avoid non-serializable literal embedded in the plan
  • [SPARK-40385]: Fix interpreted path for companion object constructor
  • [SPARK-40389]: Decimals can’t upcast as integral types if the cast can overflow
  • [SPARK-40468]: Fix column pruning in CSV when _corrupt_record is selected
  • [SPARK-40508]: Treat unknown partitioning as UnknownPartitioning
  • [SPARK-40535]: Fix bug the buffer of AggregatingAccumulator will not be created if the input rows is empty
  • [SPARK-40562]: Add spark.sql.legacy.groupingIdWithAppendedUserGroupBy
  • [SPARK-40612]: Fixing the principal used for delegation token renewal on non-YARN resource managers
  • [SPARK-40660]: Switch to XORShiftRandom to distribute elements
  • [SPARK-40703]: Introduce shuffle on SinglePartition to improve parallelism

Dependency Changes

While being a maintence release we did still upgrade some dependencies in this release they are:

You can consult JIRA for the detailed changes.

We would like to acknowledge all community members for contributing patches to this release.


Spark News Archive